
inf. J. Heat Mars Trar&r. Vol. 34, No. Ii, pp. 2921-2924, 1991 
Printed in Great Britain 

0017-9310~91$3.0010.00 
0 1991 Pergamon Press plc 

TECHNICAL NOTES 

Non-Fourier effect on heat conduction during welding 

H. Q. YANG 

CFD Research Corp., 3325-D Triana Slvd., Huntsville, AL 35805, U.S.A. 

(Received 21 May 1990 and in j&form 22 Jmumy 1991) 

INTRODUCTION 

THE KNOWLEDGE of heat transfer during welding is essential 
to the quality and producti~ty of the welding products. It is 
well known that the heat fIow experienced by a weldment 
can significantly influence the pool shape, temperature gradi- 
ent and cooling rate. On the other hand, the pool shape of 
the weldment determines the macro-structure of joint, and 
thermal stresses and the consequent residual stresses are the 
result of the non-uniform dist~bution of temperature (non- 
zero temperature gradient). The thermal history of the weld- 
ment is also very important in determining microstructural 
changes the material undergoes and the strength of the weld 
joint. It is, therefore, not surprising to notice that a iarge 
amount of effort has been devoted to the simulation of 
detailed temperature distribution during the welding process. 
Even though various aspects of heat transfer during welding 
have been thoroughly studied, the effect of non-Fourier 
conduction, which is due to the consideration of the finite 
propagation speed of the thermal wave, is not completely 
understood. 

The classical theory of heat conduction, which has been 
widely adapted in the previous simulation of heat transfer 
problems during welding, postulates a heat flux to be directly 
proportional to the temperature gradient in the form 

4 = -kVT. (11 

This heat flux responds to temperature variations sim- 
ultaneously. As a result, any temperature disturbance will 
propagate at an infinite speed. This physically unacceptable 
notion of instantaneous energy dBusion will not give reliable 
results in a short duration of initial transient, or in the 
situation when thermal travelling speed is not high, such as 
in the low temperature case. Vemotte [I] suggested a modi- 
fied flux law of the form 

dq/at+q = -kVT (2) 

where q is the heat flux, T the temperature, and z represents 
a relaxation or start-up time for the commencement of heat 
flux after a temperature gradient has been imposed on the 
medium. It is related to the speed of propagation of the 
thermal wave (c) and thermal diffusivity (a) 

T = a/c”. (3) 

Since this model was introduced, the wave nature of heat 
propagation has been the topic of many investigations [2- 
4]. In most studies related to hyperbolic heat conduction, the 
subject of interest was the transient instance during which 
the tbermal wave has not yet travelled through the entire 
domain. Actually, a hyperbolic length scale, defined as the 
product of the speed of the thermal wave and the charac- 
teristic time, may well indicate the importance of the non- 
Fourier effect. When the hvnerbolic length scale is larger 
than the physical characteristic length scal& the non-Fouher 
effect can be neglected and vice versa. In the situation of a 

moving heat source, such as during welding, the physical 
characteristic length is the product of the moving speed of 
the heat source and the characteristic time. Here, the non- 
Fourier effect prevails not only in the initial transient but 
also in the entire time duration. One may well appreciate the 
importance of the non-Fourier effect when the speed of a 
moving heat source is comparable with the speed of the 
thermal wave. Indeed once the speed of the heat source is 
equal to or greater than the speed of the thermal wave, 
the original elliptic heat conduction equation will become 
hyperbolic, and a situation may arise which gives dis- 
continuity in temperature and heat flux. This is very similar 
to the behavior of the PrandttGlauert equation describing 
compressible flow solved by a potential function. 

THEORETICAl EQUATIONS AND NUMERICAL 
SOLUTION 

The governing partial differential equation for either a 
moving point or a line heat source seems to have been first 
derived by Wilson [5]. Rosenthal [6] independently applied 
this formulation to the arc weld problem. These references 
are often quoted and have served as the starting formulation 
for the papers that followed. It is generally realized that 
for certain appiications not involving complicated weldment 
geometries, these solutions indeed provide a good prediction 
of the arc weiding process. With the assumption of constant 
properties and neglected latent heat due to phase change, the 
equation of energy conservation can be written as 

pc,(ayatj+vq = 0 (4) 

where p and cP are material density and specific heat, respec- 
tively. Combmed with equation (2), it becomes 

i/c? a*zyazt+ l/a ayat = v2T. (5) 
For the welding problem, we are interested in the tem- 

perature field observed from a moving system attached to 
the moving heat source. As shown in Fig. 1, let the fixed 
Cartesian coordinate system x, y and z be oriented such that 
the x-axis is along the weld seam and points in the direction 
of the torch velocity. The z-axis direction is through the plate 
thickness, while the y-axis is in a direction transverse to the 
welding direction. Equation (5) describes the three-dimen- 
sional heat conduction equation in terms of the tied coor- 
dinate system. The relationship between the fixed coordinates 
(x, y, z) and moving coordinates (x’, y, z) can be expressed 
in terms of the velocity of the heat source (u) 

n’ =.x-H. (6) 
This study is concerned with the heat transfer during a 

quasi-steady state of the welding process in which the welding 
torch moves with a constant velocity u, and all initial tem- 
perature disturbances have died out so that the temperature 
dist~bution has reached a steady state with respect to a 
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FIG. 1. Schematics of welding process, and reference and moving coordinate systems 

coordinate system moving with the arc (x’, I’, -_). Under this 
assumption the transient temperature effects can be removed 
from the formulation. This will make the following trans- 
formation possible : 

dT/& = --u dT/cix’. d’T,+l’t = $ c;2,~;&x’2 

(^‘7:1~2.~ = (;‘TC?.~“. (7) 

By substituting equation (7) into equation (S), the governing 
equation valid in the moving coordinate system (_Y’. J. ;) is 
obtained for a quasi-steady state process 

-u,‘ccc’7,‘&’ z (l_u?,‘c’)i;~T~~s”+(“~~Sv?+i’7“i-’, 

(8) 

Equation (8) is similar to the Euler equation for compressible 
how expressed in terms of velocity potential. As in the com- 
pressible flow, we define a thermal Mach number M as 

M = u/c. (9) 

It is seen that depending on whether M is smaller, equal 
to, or larger than unity, equation (8) will become elliptic, 
parabolic or hyperbolic. 

A control volume formulation is used in the present study 
to obtain a numerical solution of the energy equation. The 
domain of interest is divided into a set of control volumes. 
A main grid is located at the center of each control volume. 
The discretization equation for the value of the variable at a 
grid point is obtained by conserving the flux of this variable 
over the control volume that surrounds the grid point. For 
example, by integrating equation (8) over a control volume 
surrounding the point (i,.j, k) we obtain 

L I,Z.,.i. -f, I ?.,.k +fi.,+ ,.I.,, -A., 1 2.1. 

f,f,.,.i + / 2 -.f;.,.i I z = 0 (10) 

with 

-U -M’)(WisL+ I:,i.klS,,, 2,~ (lla) 

f,., b ,‘:.A = -(~TlW,, , ,yx% / I.Z.A (lib) 

t ,.A , I 2 = - (r;-T:(3z), ).A , I US,,.,+ I 1 (I Ic) 

where S is the surface area of the control wlume. The 
diffusive terms are approximated by central difference, while 
the convective terms are approximated as 

- tricx 7, + , Z,,,k = -m[(l +B)DT,+,,,~+(1 -/WT,.~.rl. 

(12) 

Here [j is a damping coefficient. When/i is zero, the approxi- 
mation is equivalent to central difference, while when p is 
unity. it is upwind difference. With this approximation, one 
obtains the final discretization equation in the form of 

A,.,,, 7, ,.A = x:A,, LH (13) 

with NB denoting the neighboring points, and A as the link 
coefficient. 

To find the solution of equation (8), appropriate boundary 
conditions must be specified. For temperature they are 
defined as follows : 

at .Y = L. 7. = -r,, (14d) 

at z = 0. -k i7:iz = c/(r) (14b) 

and at other surfaces, an adiabatic condition is used 

-k (?7:;(% C 0. (14C) 

In the above, y(r) is the heat flux supplied by the heat source 
with a certain distribution. A Gaussian flux distribution for 
arc heat input has almost invariably been used in the litera- 
ture, with 

f/(r) = 3Q/(71$) exp ( - IGird) (1% 
where Q is the total input, and is assumed to be independent 
of time. The radius r in equation (I 5) is the distance from 
the center of the arc on the surface, and rb the arc radius 
describing a region in which 95% of the total heat is 
deposited on the plate. 

Due to symmetry with respect to the weld centerhne, the 
temperature held is calculated only on one side of the centcr- 
line. In order to enhance the accuracy of calculation in the 
high heat input region and to reduce the cost of analysis, 
grids of variable spacing are used, i.e. finer spacing near the 
heat source and a coarser grid away from it. 

RESULTS AND DISCUSSION 

The workpiece considered is 200 mm long (x). 40 mm wide 
(y) and 6 mm thick (L). The physical properties of k, ‘;, and 
p are as follows : 

k = 66 W m ’ K ‘. c,, = 502 J kg ’ K ’ 

p = 7870 kg m ‘. (16) 
The total heat input is 2128 W. The arc is moving with a 
speed of 2 mm s- ’ and the arc beam radius is, as usual, 5 mm. 
In the numerical model, a non-uniform grid of 90 x 30 x 15 is 
used. 
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M=O 

M = 0.9 

(a) at the top surface 

@) at the transverse plane of x’=O 

FIG. 2. Temperature contours under condition of ri, = 5 mm with M = 0 and 0.9 at : (a) the top surface ; 
(b) the transverse plane of x’ = 0. 

Before a meaningful calculation can bc made, it is critical 
to assess the value of thermal wave speed which is related 
to the relaxation time r. According to Sieniutycz [7], r 
is between 10-s and lo-” s for gases and between 10-i’ 
and lo- I2 s for the liquids and solids. Based on the ther- 
modynamics of irreversible processes, Luikov [S] deduced 
that for solid aluminum r = 10-l’ s, whereas for capillary- 
porous bodies, the relaxation time is as much as 105-lo7 
times higher than that of solid metals. Based on the physical 
properties given in equation (16), we have 

c = (a/r)“* = 4.08 x 10-3r~‘iZ (ms-‘). 

For r within 10-‘“-10~‘2 it leads to 

(17) 

4.08 x lo* m SC’ < c < 4.08 x IO3 m SC’. (18) 

For most welding systems, the speed of the heat source is of 
the order of IO-’ m SC’. As a result, the thermal Mach 
number is of the order of 10-5-10~4. For such a small 
thermal Mach number, the non-Fourier effect can be 
neglected in the analysis for the welding problems. 

In the following, attention will be drawn to the hypo- 
thetical mathematical exercise which reveals qualitatively the 
effect of a thermal Mach number if it is large, which may 
well be realized for the capillary-porous bodies. 

Figure 2(a) shows the comparison oftemperature contours 
with thermal Mach numbers of M = 0 and 0.9 at the top 
surface (z = 0.0 1 mm). The level of the temperature contours 
is from 400 to 1800 K, which is about the melting point of 
steel. Therefore, the isotherm of 1800 K simply describes the 
size of the pool shape. In general, there is no significant 
change visible except in front of the heat source. It is seen 
that the pre-heating time becomes relatively short due to the 
non-Fourier effect. From a mathematical point of view, the 
effect of non-Fourier conduction, with the condition of fixed 

speed of moving source, is mainly in introducing a non- 
homogeneous thermal conductivity. The equivalent thermal 
conductivity is the same as the original one in the y- and Z- 
directions, but is reduced by a factor of (1 -M2) in the 
x-direction. Due to this lower thermal conductivity in the 
direction of moving heat source, the temperature gradient in 
front of the heat source tends to steepen. To gain a general 
three-dimensional perspective view of the non-Fourier effect. 
the isotherms in the transverse planes of x’ = 0 mm, which 
is the location of the heat source, is shown in Fig. 2(b). 
Apparently, in the transverse plane along the depth direction 
there is almost no variation visible, and the heat penetration 
is also the same. 

The temperature profiles along the longitudinal direction 
(x’) at the top surface of z = 0.01 mm with y = 2.5 mm are 
plotted in Fig. 3. The thermal Mach numbers here are 0, 
0.6, and 0.9. To evaluate the cooling condition the metal 
undergoes from Fig. 3, the coordinate transformation of 
equation (6) can be used, where 

and 

T(x’,y,z) = 7(x--ut,y,z) (19) 

aqat = --u aiya.d. (20) 
Indeed, the temperature profile for x’ < 0 gives a good 

indication of the cooling rate and the cooling time. Actually, 
according to equation (19), Fig. 3 can be viewed as the 
temperature history of a point which has the same coordinate 
of y and z. As seen from Fig. 3, non-Fourier effects tend to 
increase the maximum temperature and to give a higher 
cooling rate. The impact, however, is very minor. 

One of the reasons for the phenomena observed above 
may well be the result of a relatively large heat beam radius 
(rs). Therefore, the calculations are further extended to a 
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welding heat conduction is to reduce the equivalent heat 
conductivity in the direction of a moving heat source. This 
effect is negligibly small because of the high speed of the 
thermal wave. The hypothetical exercise indicates that at a 
relatively large rs, the non-Fourier effect tends to reduce the 
pre-heating time while the changes in the others are minor. 
At a smaller r,,, it tends to increase the maximum temperature 
and cooling rate in the heat-affected zone, and to ,deform the 
pool shape. 
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FIG. 3. Temperature profiles under condition of rh = 5 mm 
along the x-direction at ‘; = 2.5 mm. 

4, 

5. 

6. 

smaller heat beam radius of rb = 0.1 mm. This corresponds to 
laser or electron beam welding. Here the rest of the physical 7. 
parameters remain the same. As seen from Fig. 4(a), the pre- 
heat time is now dramatically reduced with a sharp heat front 
on the top surface. The pool shape reduces in the x-direction 
but enlarges in they- and z-directions (Fig. 4(b)). Away from 8. 
the heat source, no significant change is found. 

In conclusion, the effect of the non-Fourier conduction on 
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(a) at the top surface 

(b) at the transverse plane of x’=O 

FIG. 4. Temperature contours under condition of rb = 0 1 mm with M = 0 and 0.9 at : (a) the top surface ; 
(b) the transverse plane of x’ = 0. 


